

MERI College of Engineering & Technology (MERI-CET)

Session: 2020-2022 Course: B. Tech. Semester: 4th **Department: Civil Engineering** Subject: DCS-1, PCC-CE-204-G Faculty name: Er. Amit Kaushik Name of the Faculty Er. Amit Kaushik : Discipline **Civil Engineering** : 4^{TH} Semester : Subject DCS-1 (PCC-CE-204-G) : 15 Weeks (From JUNE- SEPT 2021) **Lesson Plan Duration** : Work load (Lectures/Practical)

:

Per week (in hours)

Lectures-04

WEEK	LECTURE	TOPIC COVERED / ASSIGNMENT GIVEN
	1^{st}	Introduction to Concrete Structures, IS 456
	2 nd	Working stress and limit state methods, Limit state v/s working stress
st		method
01 st	3 rd	Building codes, Normal distribution curve, Characteristic strength and
		Characteristics loads
	4 th	Design values, Partial safety factors and Factored loads,
	1 st	Stress-Strain relationship for concrete and steel.
02 nd	2 nd	Working Stress Method: Basic assumptions, permissible stresses in
		concrete and steel
	3 rd	Design of Singly Reinforced Rectangular Beams in flexure by WSM
	4 th	
	1^{st}	Design Examples and Numericals
03 ^{ra}	2 nd	Design of Singly Reinforced Flanged Beams in flexure by WSM
	3 rd	
	4 th	Assignment - 1
a	1^{st}	Quick revision of Singly Reinforced Beams
04 th	2 nd	Design of Doubly Reinforced Rectangular Beams in flexure By WSM
	3 rd	Design of Doubly Reinforced Flanged Beams in flexure By WSM
	4 th	Design Examples and Numericals
a	1^{st}	Assignment – 1 solution
05 th	2 nd	Steel beam theory & inverted flanged beams, design examples
	3 rd	Quick revision of Module – 1
	4 th	Assignment -2 from module - 1

MERI College of Engineering & Technology (MERI-CET)

Session: 2020-2022 Department: Civil Engineering Subject: DCS-1, PCC-CE-204-G

Course: B. Tech. Semester: 4th Faculty name: Er. Amit Kaushik

06 th	1 st	Basic assumptions, Analysis and design of singly reinforced rectangular Beam by LSM
00	2 nd	Analysis and design of singly reinforced Flanged Beam by LSM
	3 rd	Analysis and design of Doubly reinforced Rectangular Beam by LSM
	4 th	Analysis and design of Doubly reinforced Flanged Beam by LSM
	1 st	Continuous Beams by both methods -Basic assumptions, Moment of
	2 nd	inertia, settlements, Modification of moments, maximum moments and
07 th		shear.
	3 rd	Numericals & examples solving by LSM and Revision of Module
	4 th	2
	1 st	General considerations, Design of one way slab for distributed load
08 th	2 nd	Design of one way slab for concentrated load
	3 rd	Design of two way slab for concentrated load
	4 th	Design of two way slab for distributed load
	1 st	Non-rectangular slabs, Openings in slabs & Revision of Module – 5
		/ Assignment - 3
9 th	2 nd	Requirements of good detailing, Cover to reinforcement, Spacing of
	3 rd	reinforcement, Reinforcement Splicing, Anchoring reinforcing bars in
	4 th	flexure and shear
	1 st	Curtailment of reinforcement. Analysis and Design of Sections in
	2 nd	shear, bond and torsion, Diagonal tension, shear reinforcement,
10 th	3 rd	Development length, Anchorage and flexural bond, Torsional
		stiffness, equivalent shear, Torsional reinforcement, Design
		examples./ Assignment - 4
	4 th	Problem Solving of Module - 3
	1 st	Control of deflection, Cracking, Slenderness and vibrations,
11 th	2 nd	Deflection and moment relationship for limiting values of span to
	3 rd	depth, Limit state of crack width, Design examples
	4 th	Problem Solving of Module – 4
	1 st	Effective length, Minimum eccentricity, Short columns, under
12 th	2 nd	axial compression, Uniaxial and biaxial bending, Slender
	3 rd	columns. Design examples.
	4 th	Problem Solving of Module – 7
	1 st	Isolated and wall footings, Design examples. Foundations-
13 th	2 nd	

MERI College of Engineering & Technology (MERI-CET)

Session: 2020-2022 Department: Civil Engineering Subject: DCS-1, PCC-CE-204-G

Course: B. Tech. Semester: 4th Faculty name: Er. Amit Kaushik

	3 rd	Combined footings, raft foundation, design of pile cap and piles,
		under reamed piles, design examples.
	4 th	Problem Solving of Module – 8 / Assignment - 5
	1 st	Classification, Forces on retaining walls, Design criteria,
	2 nd	Stability requirements, Proportioning of cantilever retaining
14 th	3 rd	walls, counter fort retaining walls, criteria for design of counter
	4 th	forts, Design examples and Problem Solving of Module – 6
	1 st	
15 th	2 nd	Revision of complete syllabus
	3 rd	
	4 th	